
CHAPTER 6

BUCKLING OF ISOTROPIC COLUMNS AND PLATES

6.1  Derivation of the Plate Governing Equations for Buckling

The governing equations for a thin plate subjected to both in-plane and lateral

loads have been derived previously.  In those equations, there was one governing 

equation describing the relationship between the lateral deflection and the laterally 

distributed loading,

),(4 yxpwD

and other equations dealing with in-plane displacements, related to in-plane loads
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As discussed previously, the equations involving lateral displacements and lateral

loads is completely independent (uncoupled) from those involving the in-plane loadings

and in-plane displacements.

However, it is true that when in-plane loads are compressive, upon attaining

certain discrete values, these compressive loads do result in producing lateral 

displacements.  Thus, there does occur a coupling between in-plane loads and lateral 

displacements, w.  As a result, a more inclusive theory must be developed to account for 

this phenomenon, which is called buckling or g elastic instability.

Unlike in developing the governing plate equations in Chapter 1, wherein the

development began with the three dimensional equations of elasticity, the following shall

begin with looking at the in-plane forces acting on a plate element, in which the forces 

are assumed to be functions of the midsurface coordinates x and y, as shown in Figure 

6.1.
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Figure 6.1.  In-plane forces on a plate element.

Looking now at the plate element of Figure 6.2, viewed from the midsurface in

the positive y direction, the relationship between forces and displacements is seen, when 

the plate is subjected to both lateral and in-plane forces, i.e., when there is a lateral 

deflection, w (note obviously that in the figure the deflection is exaggerated).

Figure 6.2.  In-plane forces acting on a deflected plate element.

Hence, the z component of thez xN  loading per unit area is, for small slopes (i.e.,

the sine of the angle equals the angle itself in radians):
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 Neglecting terms of higher order, the force per unit planform area in the z

direction is seen to be 
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 Similarly, the z component of thez yN force per unit planform area is seen to be 
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 Finally to investigate the z component of the in-plane resultants z xyN  and yxN ,

Figure 6.3.  In-plane shear forces acting on a deflected plate element.

 Hence, the z component per unit area of the in-plane shear resultant is:z
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 Neglecting higher order terms, this result in
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 With all the above z components of forces per unit area, the governing platez

equation can be modified to include the effect of these in-plane forces on the governing 

plate equations.
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 However, from in-plane force equilibrium, it is remembered from Equations 

(2.17) and (2.18), assuming no applied surface shear stresses, that 
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Substituting these into the expression above, the final form of the equation is

found to be:
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Likewise, this governing plate equation can be reduced to the governing equation 

for a beam column by multiplying (6.7) by b (the width of the beam) and letting

0)/( y , 0 , xbNP  and q(x(( ) = bp(x(( ), to provide 

.EI  where
EI

)(

d

d

d

d 2

2

2
2

4

4

Pk
xq

xdd

w
k

xdd

w
(6.8)

 It should be noted that the load P defined above is an in-plane load which when 

positive produces compressive stresses, which differs from the convention used 

elsewhere throughout this text.  However, it is commonly used in the literature on 

buckling, is convenient, so herein is described as a barred quantity. 

Chang Liu
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6.2  Buckling of Columns Simply Supported at Each End

Solving Equation (6.8) by methods described previously, the solution can be

written as:

)(sincos)( xwExCkxBkxAxw p (6.9)

where )(xwp is the particular solution for the loading q(x(( ).  Consider, for example, the

case wherein q(x(( ) = 0, and the column is simply supported at each end.  The boundary

conditions, at x = 0, L, are then 

0)()0( Lww

(6.10)
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From the first boundary condition A + C = 0, from the third C A = 0; hence, C = 0 also. C

From the second boundary condition B sinkL + EL = 0, and from the fourth boundary 

condition

.0sin
EI

0sin2 kL
PB

kLBk  (6.11) 

Note that in Equation (6.11) when nkL , then B = E = 0; whenE nkL , then 

E = 0, E 0B  but is indeterminate and 
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It is thus seen that for most values of P , the axial compressive loading, the lateral 

deflection w is zero (A(( = B = C = C E = 0), and the in-plane and lateral forces and responsesE

are uncoupled.  However, for a countable infinity of discrete values of P, there is a lateral

deflection, but it is of an indeterminate magnitude.  Mathematically, this is referred to as

an eigenvalue problem and the discrete values given in (6.12) are called eigenvalues.  The

resulting deflections, in this case, are

w(x(( ) = B sinkx

and are called eigenfunctions.

 The natural vibration of elastic bodies are also eigenvalue problems, where in that 

case the natural frequencies are the eigenvalues and the vibration modes are the 

eigenfunctions.  This is treated in the next chapter.

 As to buckling, looking at Equation (6.12), as P  increases, it is clear that the 

lowest buckling load occurs when n = 1, and at that particular load, the column will either 
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inelastically deform and strain harden, or the column will fracture.  Hence, n > 1 has no 

physical significance.  The load 

2

2 EI

L
P  (6.13) 

is therefore the critical buckling load for this column for these boundary conditions.  In

this particular case the buckling load is called the Euler buckling load, since the Swiss 

mathematician was the first to solve the problem successfully.

Another way to phrase the buckling problem is exemplified by solving Equation

(6.8), letting constant.0  The resulting particular solution, in this case, is

Pxq 22

0 .  If the column is simply supported, solving the boundary value problem for 

the lateral deflection, results in

kLPkPP
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 In Equation (6.14), the solution of a boundary value problem, when the axial load 

P  has values given in (6.12) wherein sinkL = 0, then w(x(( ) goes to infinity, or, more

properly, since we have a small deflection linear mathematical model, w(x(( ) becomes

indefinitely large.

 Hence, whether we solve for the homogeneous solution of Equation (6.8), 

resulting in an eigenvalue problem, or we solve the nonhomogeneous Equation (6.8), 

resulting in a boundary value problem, the results are identical, when P has values given

by (6.12), or physically where P  attains the value given by (6.13), the column ‘buckles’. 

 Note also that the buckling load, Equation (6.13), is not affected by any lateral 

load q(x(( ).  The physical significance of a lateral load q(x(( ), however, is that the beam-

column may deflect sufficiently, due to both the lateral and in-plane compressive loads, 

that the resulting curvature would cause bending stresses which in addition to the 

compressive stresses may fracture or yield the column at a load less than or prior to

attaining the buckling load. 

 These elastic stability considerations are very important in analyzing or designing 

any structure in which compressive stresses result from the loading, because in addition 

to insuring that the structure is not merely overstressed or overdeflected, in this case a

new failure mode has been added, i.e., buckling.
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6.3  Column Buckling with Other Boundary Conditions

 From the previous section, the critical compressive buckling load crP  is given as
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cr
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 Numerous other texts derive critical buckling loads for columns with other 

boundary conditions, [6.1] through [6.4], and [12.2]. 

 For ease of use in analysis and design, but without derivations, the following 

column buckling equations are listed for the other classical boundary conditions. 

Column with both ends clamped 
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P 4   (6.16) 

Column with one end clamped and the other simply supported 
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Column with one end clamped and the other end free 
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6.4  Buckling of Isotropic Rectangular Plates Simply Supported on All Four Edges

Plate buckling qualitatively is analogous to column buckling, except that the

mathematics is more complicated, and the conditions that result in the lowest eigenvalue

(the actual buckling load) are not so lucid in many cases.

Whenever the in-plane forces are compressive, and are more than a few percent of 

the plate buckling loads (to be defined later), Equation (6.7) must be used rather than

Equation (3.1) in the analysis of plates.

For the plate, just as the case of the beam-column, since the in-plane load that 

causes an elastic stability is not dependent upon a lateral load, to investigate the elastic

stability we shall assume p(x(( , y) = 0 in Equation (6.7).

 Consider, as an example, a simply supported plate subjected to constant in-plane 

loads xN  and yN  (let 0xyN ), as shown in Figure 6.4.

Chang Liu
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Figure 6.4.  Rectangular plate subjected to in-plane loads.

Assume the solution of Equation (6.7) to be of the Navier form
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Substituting (6.19) into (6.7), it is convenient to define here to be 

.xy NN   (6.20) 

The solution to the eigenvalue problem is found to be 
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 Here the subscript cr denotes that this is a critical load situation – the plate

buckles.  Also note that in (6.21) xN  is negative, i.e., a load that causes compressive

stresses.

 Equation (6.21) is the complete set of eigenvalues for the simply supported plate, 

analogous to Equation (6.12) for the column.  In other words for these discrete values of 

xN  and yN , Equation (6.7) has nontrivial solutions wherein the lateral deflection is

given by (6.19); for other values w(x(( , y) = 0.
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Since we know that as the load increases, the plate will buckle at the lowest 

buckling load (or eigenvalue) and all the rest of the eigenvalues have no physical

meaning.  So it is necessary to determine what values of the integers m and n (the number 

of half sine waves) make xN  a minimum.

Defining the length to width ratio of the plate to be r =r a/b Equation (6.21) can be

rewritten as 
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Note if in Equation (6.22) ,0 r = 1 and r m = n = 1, then 
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 Note the similarities between Equations (6.23) and (6.13).

 The question remains; given a combination of xN and yN  loadings, and a given

Figure 6.5.  Values of biaxial loads causing buckling for square simply supported isotropic plate. 
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geometry r, what values of m and n provide the lowest buckling loads.  One can make a

plot such as Figure 6.5 above from manipulating Equation (6.22) (which is not shown to

scale) for a square plate (a = b, r = 1).r

 It is seen from Figure 6.5 that for such a square plate, simply supported on all four 

edges, the plate will always buckle into a half sine wave (m = n = 1) under any

combination of xN  and/or yN , since that line is always closest to the origin, hence, the

lowest buckling load situation.

 Next consider a plate under an in-plane load in the x direction only, so 0yN ,

and 0 .  In this case, Equation (6.21) can be written as
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The loaded plate is shown in Figure 6.6. 

Figure 6.6.  Plate subjected to in-plane load in the x direction.

 Examination of Equation (6.24) shows that the first term is merely the Euler 

column load (6.13) for a column of unit width, including Poisson ratio effects.  The 

second term clearly shows the buckle resisting effect providing by the simply supported 

side edges, and this effect diminishes as the plate gets wider, i.e., as b increases.  In fact 

as b , (6.24) shows that the plate acts merely as an infinity of unit width beams, 

simply supported at the ends, and because they are ‘joined together’, the Poisson ratio 

effect occurs, i.e., D instead of EI appears. 

It is obvious from Equation (6.24) that the minimum values of xN occurs when n

= 1, since n appears only in the numerator.  Thus for an isotropic plate, simply supported 

on all four edges, subjected only to an uniaxial in-plane load the buckling mode given by 

(6.19) will always be one half sine wave [sin(y(( /b)] across the span, regardless of the

length or width of the plate.

 Thus, since n = 1, Equation (6.24) can be written as 
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where it is remembered that r =r a/b, termed the aspect ratio.

Now if a < b (the plate wider than it is long), the second term is always less than

the first, hence, the minimum value of xN  is always obtained by letting m = 1.  Hence for 

ba , the buckling mode for the simply supported plate is always 
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In that case,
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To find out at what aspect ratio r, that xN  is truly a minimum, let 
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Therefore r = 1 provides that minimum value.  Hence for r m = 1, xN  is a minimum when

a = b.  Under that condition, from (6.27)
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Comparing this with the Euler buckling load of (6.13) for a simply supported 

column, it is seen that the continuity of a plate and the support along the sides of the plate 

provide a factor of at least 4 over the buckling of a series of strips (columns) that are

neither continuous nor supported along the unloaded edges.

Now as the length to width ratio increases, as a/b increases, the buckling load 

(6.27) will increase, and one can ask, will m = 1 always result in a minimum buckling

load, or is there another value of m which will provide a lower buckling load as r

increases (i.e., 1)
crcr xx for some value of r?)

Mathematically, this can be phrased as the following, using (6.25): 
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 This states the condition under which the plate of aspect ratio r will buckle inr m

half sine waves in the loaded direction rather than m – 1 sine waves.  Manipulating this 

inequality results in 

.)1( 2rmm  (6.29)

Equation (6.29) states that the plate will buckle in two half sine waves in the axial

direction rather than one when 2r .  The plate will buckle in three half sine waves in

the axial direction rather than 2, when 6r , etc.

 Again one can ask that when the plate buckles into m = 2 configuration, does a 

minimum buckling load occur, if so at what r and what is r
(min)cr xN ?

 From Equation (6.25)
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 This is the same value as is given in Equation (6.28) for m = 1.  Proceeding with

all values of r and r m, the following graph can be drawn, which clearly shows the results

(Figure 6.7).

Figure 6.7.  Buckling load as a function of aspect ratio for a simply supported isotropic plate. 
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 Hence knowing the value of r, the figure provides the actual value of xN  and the 

corresponding value of the wave number m in the load direction.  However, in practice 

for r > 1, universally one simply uses Equation (6.28) or (6.30) for the buckling load.r

However, looking more closely at Equation (6.29), as m increases we see

.or   )1( 22 barmrmmm

 This means that for long plates, the number of half sine waves of the buckles have

lengths approximately equal to the plate width.  Another way to stating it is that a long

plate simply supported on all four edges and subjected to a uniaxial compressive load 

attempts to buckle into a number of square cells.

 Remembering that hN xx , Equation (6.28) or (6.30) can be written as the 

following for 1ba ,
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6.5  Buckling of Isotropic Plates with Other Loads and Boundary Conditions 

 The solution to the buckling of flat isotropic plates simply supported on all four 

sides subjected to uniaxial uniform compressive in-plane loads has been treated in detail. 

However, for many other boundary conditions, simple displacement functions like

Equation (6.19) do not exist, and in some cases analytical, exact solutions analogous to

Equations (6.21) and (6.31) have not been found.  In those cases approximate solutions

have been found using energy methods, which will be discussed in Chapters 8 and 9. 

These have been catalogued by Gerard and Becker [6.3] among others, and are presented 

in Figure 6.8 and ck , given in the following equations:

2

2

cr

2

2

2

cr
;

)1(12 b

Dk
N

b

hEk c
x

c
x  (6.32) 
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Figure 6.8.  Compressive-buckling coefficients for flat rectangular isotropic plates. 

 In many practical applications, the edge rotational restraints lie somewhere 

between fully clamped and simply supported along the unloaded edges.  For the case of 

the loaded edges simply supported, the buckling coefficient, ck , of Equation (6.32) are

also given by Gerard and Becker [6.3] as shown in Figure 6.9.  The unloaded edge

restraint, , is zero for simply supported edges and infinity for full clamping.  Values in

between these extremes require engineering judgment.
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Figure 6.9.  Compressive-buckling-stress coefficient of isotropic plates as a function of a/b for various 

amounts of edge rotational restraint.

For in-plane shear loading, the critical shear stress is given by the following 

equations:
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where sK  is given in Figure 6.10 for various boundary conditions [6.3].
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Figure 6.10.  Shear-buckling-stress coefficient of isotropic plates as a function of a/b for clamped and 

hinged edges.

For rectangular plates subjected to in-plane bending loads, the following equation

is used to determine the stress value for the buckling of the plate shown in Figure 6.11.
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)-12(1 b
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where again is the value of the edge constraint as discussed previously. 
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Figure 6.11.  Bending-buckling coefficient of isotropic plates as a function of a/b for various amounts of 

edge rotational restraint.

6.6  The Buckling of an Isotropic Plate on an Elastic Foundation Subjected to

      Biaxial In-Plane Compressive Loads

It is important to consider that besides overall buckling of the entire plate, it is

possible that a sandwich face plate may buckle, due to loads applied to the face.  In this 

case the plate can be considered to be supported on a uniform elastic foundation, namely 

the core.  In such a case the buckling equation for this phenomenon is

0
2

2

2

2
4

y

w
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w
NkwwD yx   (6.35) 

where D is the flexural stiffness of the face plate, w is the lateral displacement of the face

plate, k is the foundation modulus in force/unit area/unit deflection, and k yx NN , are the 
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compressive loads per unit width in the subscripted direction (i.e., xx NN , etc.) acting

on that particular face plate.

 Considering this localized buckling phenomenon, is has been found that the plate

boundary conditions at the outer plate edges do not affect the buckling load.  Therefore,

for analytical simplicity, assume simply-supported edges on all four sides.  Therefore, the

Navier approach may be used for the solution, with the lateral deflection assumed to be

b

yn
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xm
Ayxw mn

yyxx
sinsin),(  (6.36)

where mnA  is the deflection amplitude, a is the plate dimension in the x-direction, and b is

the plate dimension in the y-direction.

 For simplification, let xy NN / and r =r a/b.  Substituting Equation (6.36) into 

(6.35) and using the above
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If 1 , and r = 1, then the response is independent of direction.  When the in-r

plane loads are caused by the cooling of a sandwich plate wherein the coefficients of 

thermal expansion between face and core cause the face to be compressed, then 1.

Further because the buckling is a localized phenomenon, one can let r = 1.  Thenr

Equation (6.37) may be written as
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First it is seen that the minimum value of xN  will occur when m = n = 1,

therefore

2

224

2

)/4( kaaD
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To find the dimension a resulting in a minimum value of crxN , set 0/cr aN x , with 

the result that 
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This is the half wavelength of the buckle that will occur, and it can be determined that 

this is a localized buckle in a reasonably sized face plate.  Substituting Equation (6.40) 

into (6.39) results in 

2/1
cr )(2 kDN x

As defined, crxN  is a compressive force per unit width and equal to cryN , since

1, or in the usual notation, where ii NN ,

2/1

crcr
)(2 kDNN yx  (6.41)

The buckling stress in the face plate is therefore 

2/1

cr )(
2

kD
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  (6.42) 

 It has been found that in the fabrication of some sandwich plates, because of the

cooling down subsequent to joining, the faces to the core in a rolling operation, 

differential thermal contractions caused sufficiently high compressive stresses in the 

faces to cause thermal buckling of the sandwich faces. 
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6.8  Problems 

6.1. In a plate clamped on all four edges, 25.0 and loaded in the x direction the 

critical buckling stress is given by (from Reference 7.1) 
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hEk
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Dk kk

 where D is the flexural stiffness, b is the plate width, a is the plate length, and h is 

the plate thickness. ck  is given by 
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a/b

k

0.75

11.69

1.0

10.07

1.5

8.33

2.0

7.88

2.5

7.57

3.0

7.37

 (a) Part of a support fixture for a missile launcher measure 5154 , and must 

support 145,000 lbs in axially compressive load.  Its edges are all clamped.  If 

the plate is composed of aluminum with psi6 , allowable 30,000 

psi (both the tensile and compressive allowable stress is of magnitude 30,000 

psi) and 25.0 .  What thickness is required to prevent buckling?  What 

thickness is required to prevent overstressing? 

(b) Suppose a steel plate of the same dimensions were used instead of the

aluminum with the following properties: psi1030 6

steelE , 25.0 and 

psi000,100allowable .  What thickness is needed to prevent buckling?  Will

the steel plate be overstressed? 

 (c) The density of steel is 3lbs/in283.0 , the density of aluminum is 3lbs/in100.0 .

Which plate will be lighter?

6.2. A structural component in the interior of an underwater structure consists of a 

square plate of dimension a, simply supported on all four sides.  If the component is 

subjected to in-plane compressive loads in both the x and y directions of equal 

magnitude, find xN .

6.3. An aluminum support structure consists of a rectangular plate simply supported on 

all four edges is subjected to an in-plane uniaxial compressive load.  If the length of 

the plate in the load direction is 4 feet, the width 3 feet, determine the minimum 

plate thickness to insure that the plate would buckling in the elastic range, if the 

material properties are psi6 , 3.0  and the compressive yield stress,

psi000,30y .

6.4. A rectangular plate 4 feet 2 feet is subjected to an in-plane compressive load xN

in the longer direction as shown in Figure 7.6.  How much weight of plate can be 

saved by using a plate clamped on all four edges rather than having the plate simply

supported on all four edges to resist the same compressive load 
crxN ?  Express the 

answer as a percentage. 

6.5. An aluminum plate measure 6 feet 3 feet, of thickness 0.1 inch is clamped on all 

four edges.  Use the material properties in Problem 6.3 above. 

 (a) If it is subjected to a compressive in-plane load in the longer direction, what is 

the buckling stress? 

 (b) How much higher is the buckling stress compared to the same plate simply 

supported on all four edges? 




